Slurry acidification: a case study exploring the costs and benefits of slurry acidification in England

John Langley¹, James Dowers¹ Steven Anthony², John Williams¹

¹ADAS Boxworth, Battlegate Road, Boxworth, Cambridge, CB23 4NN

² ADAS Wolverhampton, Newton Court, Pendeford Business Park, Wolverhampton, WV9 5HB

Introduction

- The UK has committed to a 16% reduction in ammonia (NH₃) emissions by 2030.
- Agriculture is responsible for c. 90% of UK total NH₃ emissions.
- Slurry acidification is effective at reducing ammonia emissions at all stages of the manure management chain.

Objectives

- Quantify the impact of slurry acidification on N loss pathways NH₃, nitrate (NO₃), and nitrous oxide (N₂O) - from pig and cattle slurry management at a national scale.
- Assess the costs (capital and operational) and benefits (societal and increased fertiliser

<u>Methods</u>

- Three scenarios were modelled using a purpose-built model, based on UK greenhouse gas and NH₃ emissions inventory, and farming practises survey:
 - 1) Hypothetical maximum all pig slurry acidified in-house, 6% and 94% of cattle slurry acidified in-house, and pre-store, respectively.
 - 2) Maximum based on acid availability (*ca*. 50 million litres) 87% of pig slurry acidified in-house, and 18% of cattle slurry acidified pre-store.
 3) In-field only scenario based on acid availability 87% of pig slurry, and 18% of cattle slurry acidified.
- Changes to NH₃, NO₃ leaching, and indirect N₂O emissions costed using min, central and max costs of UK government societal benefit figures.
- Costs of installation and management of acidification systems were based on manufacturer costs for cattle £133 cow year⁻¹.
- Costs for pig systems were derived from the installation of acidification equipment on a commercial pig farm £41 pig place year⁻¹ (Image 1).
- In-field acidification £4.22 m⁻³ if previously broadcast, and £2.72 m⁻³ if previously band spread.

<u>Results</u>

a)	Scenario 1	Scenario 2	Scenario 3	b)	Scenario 1	Scenario 2	Scenario 3	c)	Scenario 1	Scenario 2	Scenario 3
300				300				300			
250				250				250			
200				200				200			

Figure 1: Cost benefits of slurry acidification across the UK. Panel a – minimum societal costs. Panel b – central societal costs. Panel c – maximum societal costs.

- The greatest NH₃-N abatement (10 kt) was achieved in Scenario 1 and delivered the greatest increase in crop available N applied (£15.7 million) but had the greatest economic cost (£190 million).
- In-house acidification was the most expensive technology but had the greatest impact on abatement potential.
- Scenario 3 had the lowest cost (£25.7 million), but also the lowest NH₃-N abatement (1.4 kt).
- The net value of implementation varied depending on the societal benefit figures used minimum and central figures show a negative value for implementation across all scenarios, but maximum value gave a positive value for all three scenarios.

<u>Conclusions</u>

- All three scenarios resulted in a net deficit comparing costs and benefits for minimum (Scenario 1: -£106 million yr⁻¹; 2: -£50 million yr⁻¹; 3: -£25 million yr⁻¹) and central (Scenario 1: -£49 million yr⁻¹; 2: -£25 million yr⁻¹; 3: -£15 million yr⁻¹) cost, but a net surplus for maximum (Scenario 1: £99 million yr⁻¹; 2: £45 million yr⁻¹; 3: £11 million yr⁻¹) cost values of societal benefit on N reduction.
- The cost of slurry acidification at a national scale was predicted to exceed the benefits based on current central estimates of the societal cost of NH₃ and N₂O emissions to air and NO₃ leaching losses to water.

Department for Environment Food & Rural Affairs

