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� Soil health score (SHS) is site-specific
and based on soil organic matter.

� A 0.5 SHS increase equals ~1.15 Mg
ha�1 yield boost under severe drought.

� Soil health more effectively predicts
yields with increasing drought severity.

� Effects of soil health are largely inde-
pendent of soil texture and suborders.
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A B S T R A C T

Soil organic matter (SOM) serves as an important indicator of soil health. Soils with high SOM are associated with
high crop yield under drought conditions. However, a critical question remains unanswered: is the yield-
stabilizing effect of SOM attributable to inherent soil properties, such as soil texture and taxonomy? Or is it
driven by dynamic soil properties that reflect the overall health of the soil? Following the Soil Health Assessment
Protocol and Evaluation, we derived a soil health score (SHS; range: 0–1) from the SOM concentration by ac-
counting for site-specific variables, including climate, texture, and soil suborder. Using county-level data of
rainfed corn across the U.S. from 2000 to 2016, we found that higher SHS were associated with higher yields.
During the most severe drought events, an increase of 0.5 in SHS was associated with a 1.15 � 0.18 Mg ha�1

increment in corn yield, suggesting that high SHS helps to stabilize yield in drought. Interestingly, smaller but
statistically significant effects of SHS on yield were found during less intensive droughts. The SOM concentration
was a slightly better predictor of corn yield than the SHS. We also found similar effects of SHS on corn yield across
different soil types, i.e., different textures or soil suborders, under severe drought conditions. Our results suggest
that soil health is a main factor in explaining the yield benefits of SOM, while the effects of soil health were not
driven by differences in soil texture or suborder. We argue that the resilience of corn yield against drought can be
oil organic matter; SHS, soil health score; AWC, available water capacity; CEC, cation exchange capacity; SHAPE,
SH, Comprehensive Assessment of Soil Health; SPEI, standardized precipitation evapotranspiration index.
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potentially increased by adopting agronomic practices aimed at augmenting SOM and improving overall soil
health across a broad spectrum of geographical locations and site characteristics.
1. Introduction

Healthy soils serve as the cornerstone for achieving food security and
promoting environmental sustainability in the agricultural sector. His-
torically, soil testing mostly concerns itself with soil fertility from the
perspective of nutrient management (Chang et al., 2022). In the recent
decade, the concept of soil health has gained global recognition to
describe the biological, chemical, and physical limitations of soil func-
tions, including their role in sustainable crop production (Lehmann et al.,
2020; Wood and Blankinship, 2022). Despite the growing enthusiasm
surrounding the soil health concept, the science of quantifying and
assessing soil health remains in its early stages. Various indices and
scores have been proposed to quantify the extent of soil health (Andrews
et al., 2004; Haney et al., 2018; Kibblewhite et al., 2008; Moebius-Clune
et al., 2016; Nunes et al., 2021). However, it is unclear how effectively
they can capture and predict the key outcomes of healthy soil, such as
agricultural productivity and carbon sequestration. For example, estab-
lishing the causality between soil health and crop yield continues to be a
complex challenge (Crookston et al., 2022; Olayemi et al., 2020; Wade
et al., 2020).

Multiple popular approaches for assessing soil health are based on the
idea of variance partitioning (Karlen et al., 2019; Nunes et al., 2021;
Zuber et al., 2020). For a given soil health indicator (e.g., soil organic
matter or aggregate stability), its variance can be explained by two types
of factors: inherent site-specific drivers and dynamic drivers. The former
include texture, climate, taxonomy, and other edaphic factors that are not
easily altered by management practices and do not change drastically
over time (Wiesmeier et al., 2019). In contrast, dynamic drivers consist of
land use and management practices that can quickly change soil health
over time. These soil health assessment methods aim to discern the
variance in the given soil health indicator that can be attributed to
inherent properties, typically using a peer group approach. After ac-
counting for the variance due to inherent properties, soil health status is
reflected in the variance associated with dynamic drivers. For example,
soils are categorized into three peer groups based on texture, as in the
Comprehensive Assessment of Soil Health (CASH; Moebius-Clune et al.,
2016). The variability of soil health indicators, e.g., soil organic carbon
(SOC), among these texture groups reflects the effects of texture on soil
health. Then, the within-group variability of the soil health indicators is
used to quantify soil health conditions. In this instance, high SOC values
correspond to healthier soils in each texture group of CASH.

The Soil Health Assessment Protocol and Evaluation (SHAPE) is
another example of the peer group approach. However, SHAPE is more
robust as compared to CASH, taking into account not only the variation in
soil texture but also climate (local precipitation and temperature) and
soil taxonomy across the continental U.S. (Nunes et al., 2021). In addi-
tion, SHAPE was developed using a large, continental-scale database,
making it more representative of U.S. edaphoclimatic conditions. Using
SOC as an example, the SHAPE framework categorizes soils into five soil
texture classes and five soil suborder classes (Table S1) based on the
inherent potential of each soil to accumulate organic carbon. This results
in the creation of 25 peer groups, each representing a unique combina-
tion of texture and suborder classes (Fig. 1C). Using a Bayesian modeling
approach, it also adjusts the scoring function for variations in annual
temperature and precipitation (Nunes et al., 2021). Similar to CASH, it
produces scores in the range of 0–100% that correspond to the quantile of
SOC values within each peer group.

Methods like CASH and SHAPE rely on several assumptions to
quantify soil health: (1) the peer group approach effectively accounts for
the variance associated with inherent properties, (2) an increase in a soil
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health indicator within a peer group corresponds to an increase in soil
health, and (3) the increase in soil health leads to an increase in
ecosystem functions (such as improved nutrient cycling and retention).
From the evolution of CASH to SHAPE, these methods have increasingly
incorporated inherent drivers to more comprehensively account for their
impacts on soil health indicators (1st assumption). While the 2nd
assumption is intrinsic to these methods, they enable us to evaluate the
3rd assumption when we compile a dataset with matching records of soil
health and ecosystem functions. The outcome of these evaluations will
ultimately inform us about the effectiveness of these methods in assessing
soil health.

Soil organic matter (SOM) content is a critical indicator of soil health
and is fundamental to various ecosystem processes. High SOM concen-
trations have been shown to benefit crop yields (Kane et al., 2021; Old-
field et al., 2019; Vendig et al., 2023). For instance, using county-level
corn yield data from the U.S., Kane et al. (2021) showed that soils with
higher SOM were associated with lower mean yield losses under drought
conditions. Their results indicate that SOM-rich soils help to stabilize
corn yield under drought conditions. However, it is unclear whether
these yield benefits are driven by soil health or the inherent site-specific
drivers. We obtained predominantly rainfed county-level corn yields in
the U.S. from 2000 to 2016 to fill this research gap. Building upon Kane
et al. (2021), we used linear mixed effects models to assess the effects of
SOM-derived soil health scores (SHS) on corn yields under different
drought conditions. We hypothesized that counties with higher SHS,
associated with higher SOM levels in the root zone (0–30 cm), would
have greater yield stability during drought. In other words, soils with
high SHS are associated with high yield under severe drought conditions.
To evaluate whether inherent factors (i.e., soil texture, suborder, and
climate conditions) were responsible for the positive effects of SOM on
crop yield, we followed the peer group approach of SHAPE to categorize
soils into different texture and suborder groups (Fig. 1C) as well as
compared the effects of SOM on yield between peer groups. If the effects
of the SOM are independent of peer groups, then a similar linear rela-
tionship between SOM and yield would be observed both within and
between peer groups, as illustrated in scenario A (Fig. 1A). In contrast, if
the effects of SOM are driven by differences in inherent factors between
peer groups, then the SOM-yield relationship between peer groups would
drastically differ from those within peer groups, as illustrated in scenario
B (Fig. 1B).

2. Materials and methods

2.1. Data collection

County-level soil attributes, corn yields, and Standardized Precipita-
tion Evapotranspiration Index (SPEI) data were obtained from Kane et al.
(2021). These data were all derived from publicly available sources,
including the USDA's corn-frequency raster, the Gridded Soil Survey
Geographic (gSSURGO) database, the National Agricultural Statistics
Service's corn yield data (USDA, 2018), and the Centers for Disease
Control and Prevention SPEI database (National Environmental Public
Health Tracking Network, 2018). Details of data processing can be found
in Kane et al. (2021).

2.2. Soil health scoring

We adopted the SHAPE framework to derive SHS from soil organic
carbon (SOC) concentrations (Nunes et al., 2021). The SHAPE framework
scores soil health based on scoring curves developed from a



Fig. 1. Schematic diagrams comparing the yield-stabilizing effects of soil organic matter (SOM) across peer groups and how the SHAPE tool works to score soil health.
T2 and T3 refer to two texture groups, while S3 and S4 refer to two soil suborder groups (Table S1). Since soils from T2 have coarser texture than those from T3, a T2
soil with 3 g 100 g�1 SOM receives a higher soil heath score (SHS) than a T3 soil with the same SOM concentration. As soils from S3 are more SOM-rich than those
from S4, a S3 soil with 3 g 100 g�1 SOM receives a lower SHS than a S4 soil with the same SOM concentration.
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comprehensive national database and Bayesian model-derived condi-
tional cumulative distribution functions. It considers all possible com-
binations of five soil suborders and five texture classes as peer groups
(Table S1) and accounts for variations in temperature and precipitation
(i.e., climate variables). The SHS indicates the quantile of a SOM value in
relation to other soils with similar inherent and climate conditions, i.e.,
the SHAPE approach accounts for the inherent factors driving soil health
before accounting for the dynamic (management) impact. It is worth
noting that a soil from the Midwestern U.S. can have the same SHS as a
soil from the Southeastern U.S. This implies that both soils are positioned
similarly in their SOM concentrations when compared to soils with
similar inherent and climate conditions. However, their SOM concen-
trations differ because of regional differences in soil-forming factors.
Thus, the SHAPE approach controls for the regional variability in SOM
values by accounting for their inherent and climate drivers. The mean
SOM concentration decreases as the suborder class number increases
from S1 to S5, while it increases from texture class T1 (coarse) to T5
(fine) (Table S1). These groupings were chosen to consolidate the large
number of suborders (n ¼ 75) and texture classes (n ¼ 12) available in
Soil Taxonomy and to amplify the differences in SOM among groups and
the variance explained by them (Nunes et al., 2021).

County-level values of SOM (%), sand, silt, and clay were acquired
from the gSSURGO database following Kane et al. (2021). Briefly, the aqp
package in R (Beaudette et al., 2023) was used to convert the gSSURGO
characterization data for each series to the 0–30 cm soil depth, which
corresponds to a typical root depth of corn (Feldman, 1994). Then, we
estimated the mean value of selected soil properties for each map unit by
weighing the coverages of the included soil series and converted the data
to a raster format. These raster layers were then masked to remove areas
that did not grow corn consistently and used to calculate county-level
mean SOM (%, corresponding to g SOM 100 g�1 soil) values weighted
3

by the relative proportions of map units. The SOC (g 100 g�1 soil) was
calculated by dividing the SOM by the van Bemmelen factor (1.724)
(Nelson and Sommers, 1996). Soil suborder data were obtained in a
similar fashion, where the suborder of each map unit was determined as
that of the major component with the largest spatial coverage in the
given map unit. County-level suborders were determined as the suborder
with the largest spatial coverage. The mean annual temperature (MAT)
and the mean annual precipitation (MAP) at the county level were ob-
tained from the NOAA Climate Divisional Database (nClimDiv) (NOAA,
2018). The SHSs were calculated using a customized R script available at
https://github.com/paparker/SHAPE. The SHSs vary between 0 and 1
(0–100%), where the higher value represents healthier soil within the
peer group. Even though the SHS is derived from only SOM, the SHAPE
approach enables us to answer our primary question, i.e., whether the
benefits of SOM on yield were driven by soil health or inherent factors.

2.3. Yield and yield deficit modeling

First, we created four different drought categories based on the mean
and standard deviation of the SPEI values. The SPEI is a drought index
where the differences between cumulative monthly precipitation and
potential evapotranspiration are determined from long-term climate data
(National Environmental Public Health Tracking Network, 2018). It is a
robust measurement of drought severity through time and space across a
wide range of climates (Vicente-Serrano et al., 2010). As drought effects
are expected to be more distinct on corn growth and yield during summer
(Kane et al., 2021), we considered SPEI values for summer months (i.e.,
May to August). The drought categories were as follows: very severe
drought, greater than or equal to two standard deviations (SPEI �
�1.02); severe drought, between one and two standard deviations
(�1.02 < SPEI � �0.46); moderate drought, between one standard

https://github.com/paparker/SHAPE
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deviation and the mean (�0.46 < SPEI � 0.10); and normal condition,
greater than or equal to the mean (SPEI � 0.10). We standardized all
relevant data following Gelman (2008) by subtracting the mean from
each observation and dividing the resulting value by two standard de-
viations. We built linear mixed models of yield (Mg ha�1) using SHS, soil
clay content (%), soil pH, and available water capacity (AWC; %) as in-
dependent variables. We added clay content, pH, and AWC to soils in
addition to SHS in the model to account for other potential drivers of
yield. We calculated the variance inflation factors (VIF) to identify the
variables with high collinearities with others (Table S2). Due to its high
VIF (>5), cation exchange capacity was excluded from the models. We
also added a random effect of states following Kane et al. (2021) to
capture the regional variability of agricultural management and envi-
ronment in the model results. We acknowledge that the state is only a
coarse indicator of this regional variability. Then, a linear mixed model
was constructed for each drought category. The lme4 package in R (Bates
et al., 2015) was used to fit and analyze linear mixed effect models, and
the lmerTest package (Kuznetsova et al., 2017) was used to obtain the
p-values of model coefficients. The model was coded in lme4 as follows:

Yield ~ SHS * clay * pH * AWC þ (1|State)

We estimated the marginal and conditional coefficient of determi-
nation (R2) of the models with the MuMIn package (Barton, 2020). We
observed the effects of SHS by plotting SHS against yields, adapted for
each drought category. We also estimated the yields for each drought
category for a one-unit increase in SHS by dividing the standardized
coefficients from the yield models by two standard deviations, as it
converted the standardized data back to their raw values (Gelman,
2008).

We calculated yield deficits across all counties for very severe, severe,
and moderate drought categories by subtracting the mean yield under
normal conditions in the county from the mean yield under each drought
category. This approach helps to control for the temporal autocorrelation
in yields across different years in the same county. Yield deficit is
expressed as negative values, and large absolute values indicate a
stronger decline in yield under drought. To evaluate the effect of SHS on
the yield deficits, we built similar linear mixed models with yield deficit
(Mg ha�1) as the response using SHS, soil clay content (%), soil pH, and
available water capacity (AWC; %) as independent variables after stan-
dardization of data following Gelman (2008). Similar to yield models, we
also added a random effect of states following Kane et al. (2021) to
capture the regional variability in the yield deficit model results. The
model was coded in lme4 as follows:

Yield deficit ~ SHS * clay * pH * AWC þ (1|State)

To evaluate whether the effects of SHS on yield (and yield deficit)
differed between different soil texture classes, we built additional linear
models of yields (and yield deficits) at each drought class with inde-
pendent variables including the SHS, soil texture class, and their inter-
action. The models were coded in R as follows:

Yield ~ SHS * Texture class

Yield deficit ~ SHS * Texture class

A significant interaction effect (α ¼ 0.05) would indicate that the
regression coefficients of SHS differed significantly across different
texture classes. The significant interaction effect was also followed by
pairwise comparisons of the regression coefficients between texture
classes using the emmeans package in R (Lenth et al., 2022). We repeated
this analysis across soil suborder classes. Similarly, the models were
coded in R as follows:

Yield ~ SHS * Suborder class

Yield deficit ~ SHS * Suborder class
4

We omitted the very severe drought class from the suborder models
due to their small sample size (less than 100; Table S1). The relatively
small sample size also prevented us from conducting similar analyses in
each combination of texture and suborder classes. The county-wise
extent of mean SHS and yield deficits under different drought cate-
gories are shown in Fig. S1.

3. Results and discussions

3.1. Effects of SOM and soil health on corn yield

We found that soil health scores (SHS) significantly affected corn
yield in four drought categories (Fig. 2A). During the most severe
drought events, an increase of 0.5 (out of 1) in SHS was associated with a
1.15 � 0.18 Mg ha�1 (mean � standard error unless otherwise noted)
increase in corn yield (p < 0.001). Smaller, yet statistically significant
effects were observed with the decrease in drought intensity (Table S3A;
all p < 0.001). For instance, an increment of 0.5 in SHS only resulted in a
yield increase of 0.40 � 0.03 Mg ha�1 under normal conditions. These
results expand upon the prior research conducted by Kane et al. (2021)
and align with previous studies that documented positive correlations
between SOM and yield under drought conditions in the U.S. (Williams
et al., 2016; Zhou et al., 2021). Our results also demonstrate that SHS
becomes more effective in predicting corn yield under increasing drought
severity, highlighting a yield-stabilizing role of SOM.

Compared to SOM concentration, SHS had a slightly less pronounced
effect on yields, as it had a smaller standardized coefficient and a slope
less steep than SOM in each drought category (Table S3A). The SOM
being slightly better in predicting yields than SHS could be due to the
added effect of inherent soil and climate drivers with SOM, indicating the
significance of regional variability. The SHS models also had slightly
lower marginal R2 values than the SOMmodels but higher conditional R2

values. For instance, under very severe drought, the fixed effects of the
SOM model explained 21.5% of the variability in yield (i.e., marginal R2

¼ 0.215), while those of SHS explained 18.0% of the variability. Under
severe drought, the marginal R2 was higher in the SOMmodel than in the
SHS model (0.239 vs. 0.188, respectively). After accounting for the
inherent drivers of SOM, SHS models still retained most of the variation
in yields. These results suggest that soil health is the main factor in
explaining the yield stabilizing effect of SOM. Other factors, including
inherent ones, likely explained the rest of the yield stabilizing effect of
SOM. Since the difference between conditional R2 and marginal R2 cor-
responds to the effects of the random factor (i.e., state), it is worth noting
that the state explained more yield variability than SOM (or SHS). The
state reflects regional variability in inherent soil-forming factors and
management practices, such as fertilization application, highlighting
their roles in regulating corn yield at the continental scale (Kane et al.,
2021).

The SHS also significantly affected yield deficits under severe
droughts (Fig. 2B; Table S3B). With increasing SHS, the yield deficit
decreased in all drought categories (p < 0.001, and p < 0.05). During a
very severe drought, an increase of 0.5 in SHS resulted in a 0.5 � 0.15
Mg ha�1 decrease in yield deficit. Smaller changes were observed as the
drought severity decreased. For example, under moderate drought, a 0.5
increase in SHS only decreased the yield deficit by 0.12 � 0.05 Mg ha�1.
The impact of SHS on yield deficits was consistent with their effects on
yields, indicative of the robustness of these yield stabilizing effects.
Interestingly, yield deficits under very severe drought exhibited sub-
stantial variability in instances of low SHSs, with some of these less
healthy soils registering near-zero yield deficits. In contrast, soils with
high SHS displayed a decrease in yield deficit values approaching zero.
Although these patterns could have been influenced by the uneven dis-
tribution of samples across the full range of SHS, these results could also
suggest that corn yield was more stable against intensive drought when
SOM levels were high.



Fig. 2. (A) Yield stability increases with soil health scores (SHS) throughout county years and different texture peer groups, with effects becoming more pronounced
with increasing drought severity. (B) Yield deficit decreases with increasing SHS with the effects becoming stronger with increasing drought severity. Trend lines
represent predicted yields (or yield deficits) based on the marginal effect. The p values indicate the significance of the effect of SHS. The standardized coefficients (or
slopes) represent the yield (or yield deficit) prediction in response to the marginal effect of SHS. Explained variation indicates marginal R2 of the model.
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Soil pH, clay content, and AWC all had meaningful effects on corn
yield, as their main effects were significant in most of the models studied
(Table S3A). These factors have been well-documented to influence corn
productivity. For example, most corn cultivars prefer a soil pH range of
5–6.2 (Heiniger, 2018), and high acidity reduces corn yield during
drought (Caires et al., 2008). Soil AWC plays a critical role in buffering
plant water stress for rainfed corn (Benjamin et al., 2015; de Araujo
Rufino et al., 2018), while clay content is a key factor influencing SOM
and AWC (Georgiou et al., 2022; Minasny andMcBratney, 2018). Despite
their significant main effects, many of the interaction effects between
these factors and the SHS (or SOM)were not statistically significant. Only
one three-way interaction between SHS, clay, and AWC was consistently
significant in all models. These results suggest that the effect of SHS on
yield was largely independent of clay, pH, and AWC.

3.2. Effects of soil texture and suborder on yield and yield deficit prediction
curves

To evaluate whether soil texture influenced the effects of SHS on
yield, we built a linear model using SHS, texture classes, and their
interaction as the main factors. Under very severe drought, SHS was a
significant predictor of yield (p < 0.001), and the full model explained
13.5% of the variability in yield (Table S4; Fig. 3). The interaction effect
between SHS and texture classes on yield was not statistically significant
(Table S4A). When yield was plotted against SHS, the slopes of different
texture classes were indistinguishable from each other. Similarly, the
5

interaction between SOM and texture classes did not affect corn yield,
and the slopes of SOM models were largely comparable across different
texture classes (Fig. S2; Table S4). We then repeated this analysis for
county-level yield deficit and found the same patterns where SHS was a
significant predictor of yield deficit (p < 0.001; Fig. 3). However, the
interaction between SHS and texture class did not influence yield deficit
(Table S4B). Together, these results suggest that the effect of soil health
on yield is independent of soil texture under very severe drought. In other
words, inherent variability in soil texture cannot explain the yield ben-
efits of SOM during extreme drought events (Kane et al., 2021; Williams
et al., 2016). Our study thus indicates that SOM can contribute to corn
yield stability under extreme conditions across a wide range of soil
textures.

We also observed that the intercepts of the SHS models differed
among texture classes under very severe drought. The intercept here
represents the estimated yield when the SHS is zero. Therefore, the dif-
ferences in the intercepts reflect the effect of texture on corn yield when
the SOM has been taken into account. Texture class T2 had a lower
intercept than the other two classes, as it contained more coarse-textured
soils and, therefore, had a lower capacity to retain SOM. Although the
soils in texture class T4 containedmore clay particles than those in T3, T4
had a lower intercept than T3. Previous studies have reported a bimodal
relationship between clay content and yield (Katerji and Mastrorilli,
2009; Zipper et al., 2015). Clay-rich soils with a low level of SOM are
particularly vulnerable to compaction, which subsequently limits root
growth and crop productivity (Parent et al., 2008).



Fig. 3. The effects of SHS on yields (A) and on yield deficits (B) by soil texture classes under very severe droughts. The p values indicate the significance of the effect of
SHS. Explained variations indicate the R2 of the full model, including the SHS, texture classes, and their interaction.

S. Mahmood et al. Soil & Environmental Health 1 (2023) 100048
Under less severe drought and normal conditions, soil texture regu-
lated the effects of SHS on yield, as indicated by a significant interaction
effect between texture and SHS (Table S4A). Pairwise comparisons
further show that the regression slope of the T3 texture class was lower
than those of the other classes in each drought class, while there was no
difference in the slope between T2 and T4 (Table S5A; Figs. S2-5). The T3
is made of soils in the texture classes of silt and loamy silt, many of which
are from Midwestern U.S., including Illinois, Wisconsin, Indiana, Ohio,
and Kentucky. Noticeably, all T3 soils had SHS less than 0.5. Since SHAPE
was constructed using data from both natural and agricultural soils, our
results suggest that SOM is depleted in agricultural T3 soils compared to
their counterparts in natural systems. Given the prevalence of T3 soils in
the U.S., further examination is warranted to explain why these SOM
depletions were predominantly observed in T3 soils. We speculate that
this pattern reflects the degradation of surface soil and SOM in the Corn
Belt, which has been well documented (Rhoton et al., 2002; Thaler et al.,
2021). Nonetheless, the effects of SHS on yield remained positive and
statistically significant in each texture class (all p < 0.001; Table S4A),
regardless of drought categories, indicative of the beneficial effects of
SOM on corn yield.

Under severe drought, the effect of SHS on yield differed between soil
suborder classes, as indicated by a significant interaction between sub-
order and SHS (Table S6A). The slope of the yield model was lower in
suborder class S5 than in S4, while other pairwise comparisons of slopes
were not statistically significant (Fig. 4; Table S7A). Similar results were
also found in the SOMmodel of yield, such that the regression slope of S5
was lower than that of S4 (Tables S6A and S7A). However, the interaction
between the suborder and SHS was not detected in the model of yield
deficit. The S5 consisted of soils with the lowest mean SOM of all sub-
order classes, implying that these soils had the lowest capacity to retain
the SOM. Most of the S5 soils in this assessment are Udults (111 out of
115 soils) from states including Alabama, Kentucky, North Carolina,
Tennessee, and Virginia. As Udults tend to be heavily weathered, corn
productivity is likely limited by other soil properties, such as base satu-
ration and nutrient supply capacity. Their low SOM level also helps to
explain why S5 had the lowest regression intercept of the three suborder
classes (Tables S7A). Nevertheless, SHS consistently positively affected
yield in each suborder class (all p < 0.001; Table S6A). Overall, our re-
sults point to a moderate effect of suborder on the yield benefits of soil
health under severe drought.
6

The suborder also regulated the effect of soil health on yield under
moderate and normal conditions. In both drought categories, the regres-
sion slope of S5 was lower than those of S3 and S4 (Table S7A; Fig. S7-8).
In fact, both slopes of S5 were indistinguishable from 0 under moderate
drought and normal conditions (Fig. S8). Consistent with those under
severe drought, these results further illustrate that SOM has a relatively
small impact on corn yield in Udults at regional scales. We did not conduct
similar analyses under very severe drought due to the limited sample size.
These results suggest that the role of suborders in regulating the soil
health-yield relationships became stronger under less severe drought.

Our calculation of SHS was influenced by the conversion coefficient
between SOC and SOM. While SHAPE was initially formulated using
SOC, SSURGO provided data in terms of SOM. Pribyl (2010) suggested
that a factor of 2 (i.e., SOM ¼ 2 � SOC) could be more accurate in most
soils. Using a conversion factor of 2, the SHS values decreased compared
to those derived from the van Bemmelen factor (Fig. S9); however, our
main findings hold, as SHS remains more effective in predicting corn
yield with increasing drought severity. These results indicate that our
findings are robust against the conversion coefficient between SOC and
SOM.

3.3. Implications for soil management

Overall, the results support our hypothesis that healthy soils stabilize
corn yield during droughts, and the effect is particularly strong when the
drought is severe. Our work builds upon past research (Kane et al., 2021;
Williams et al., 2016; Zhou et al., 2021) and identifies soil health, rather
than inherent soil properties, as the main driver explaining the
yield-stabilizing effects of SOM during drought. Thus, building SOM and
soil health has the potential to protect corn yield in a variety of soils with
distinct textures and taxonomy. Although the benefits of soil health
appear to be weaker in certain regions, e.g., those with Udults, our work
supports the notion that the benefits of restoring SOM can be scaled down
to the farm scale. Since conservation practices, such as cover cropping
and crop rotations, have been shown to be effective in restoring SOM
(Joshi et al., 2023; Vendig et al., 2023), they could potentially increase
yield stability, especially when extreme weather events are becoming
more frequent. Our work also provides evidence supporting the current
efforts of large-scale soil health initiatives that seek to promote agricul-
tural resilience by increasing SOM (Lehmann et al., 2020).



Fig. 4. The effects of SHS on yields (A) and on yield deficits (B) by soil suborder classes under severe droughts. The p values indicate the significance of the effect of
SHS. Explained variations indicate the R2 of the full model, including the SHS, texture classes, and their interaction.
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Our findings also directly link SHS to yield, an important ecosystem
function of soil, affirming the SHAPE's approach to assessing soil health.
Following the peer-group approach, SHAPE offers exciting opportunities
to quantify the role of soil health in regulating other soil functions. We
also recognize that SHS remains a somewhat ambiguous value that acts as
a catch-all for potential mechanisms. For example, multiple physico-
chemical mechanisms have been proposed to explain the benefits of SOM
on yield, including enhanced water holding capacity, better aggregation,
and improved nutrient cycling and retention (Lal, 2016; Oldfield et al.,
2019; Zhang et al., 2007). Our results cannot be used to discern the
importance of these mechanisms directly. Instead, we primarily focused
on comparing the effectiveness of inherent vs. dynamic factors in regu-
lating the relationships between SOM and corn yield. Nonetheless, the
physiochemical mechanisms underpinning the yield benefits of SOM
warrant further research.

Even though SOM is a major soil health indicator, this assessment
showed that SOM is not the most important predictor of corn yield across
the U.S. Our models have shown that the random factor (i.e., state) could
explain similar, if not greater, variation in yield compared to the com-
bined effects of SOM, pH, clay, and AWC (Table S3), highlighting the
importance of regional variation in soil characteristics and management
in regulating yield. Yield was also extremely sensitive to drought (Fig. 2),
and SHS or SOM alone only explained 8–15% of the variation in yield in
each drought category (Fig. 2; Table S3). These results are consistent with
other modeling studies of corn yield in the U.S. (Li et al., 2019; Xu et al.,
2021). Our unique contribution is to identify that soil health, rather than
inherent properties, is responsible for the yield-stabilizing effects of SOM.

Within this assessment, we took into consideration and discussed
several aspects of soil health, including inherent and dynamic soil health
indicators (e.g., clay and silt content, AWC, pH, SOM, SOC), with the po-
tential to impact crop yield responses to drought across the U.S. Never-
theless, only SOC was scored and interpreted using the SHAPE approach
(Nunes et al., 2021). Incorporating other soil health indicatorswould have
advanced the current understanding of the correlation and causality be-
tween crop yield and soil health. Yet, the current approach is adequate to
answer our primary question, i.e., whether the yield-stabilizing benefits of
SOM could be attributed to soil health or inherent drivers. In addition, we
lack large-scale data on other soil health indicators to conduct similar
county-level analyses. The SOM remains the most widely adopted soil
health indicator, given its close associations with many soil physical,
7

chemical, and biological processes (Karlen et al., 2008). Other indicators
beyond SOC (or SOM) are currently being included in SHAPE (personal
communication; MR Nunes). It is also worth noting that our SOM and
other soil characteristics are derived from a mapping product and are
expected to carry relatively high uncertainty (Libohova et al., 2019). The
utilization of high-resolution soil characteristics and yield maps would
have improved the statistical power of our analyses. Additionally, we
lacked reliable county-level fertilization data, a crucial factor contributing
to the variability in yield. Future large-scale fertilization data can improve
the understanding of soil health and crop yield. Finally,we studied rainfed
corn, a drought-sensitive crop, for which the results for other crops in
different agroecological settings might not show similar drought resil-
ience with improved soil health as our findings showed.

4. Conclusions

Our results demonstrate that the soil health score explained a ma-
jority of the effects of SOM on county-level corn yields in the U.S. The
effects of the soil health score on yield were largely consistent across
different soil textures and soil suborder groups. Thus, our results
demonstrate that soil health, rather than inherent properties, is largely
responsible for the yield-stabilizing effects of SOM. Therefore, it is
potentially feasible to increase the resilience of corn yield against
drought by adopting agronomic practices that build SOM and soil health.
The benefits of soil health are largely independent of texture and soil
suborder, so building up soil health has the potential to improve crop
productivity across a wide range of geographical locations and site
characteristics.
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